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TABLE III
THE COMPUTED VALUES OF FREQUENCIES AND INTRINSIC Q
FACTORS FOR DIELECTRIC MIC RESONATORS HAVING

€,=362(1— j10™%), L=11.0 mm, AND ¢, = Re(¢,)
Pernlittivity Dimensions TE_ modes TE, Modes
& ;’“}:“ o 1o [ Az | G [#MHz | Q&
1]303-7165410 [2.14 [3995(1.77| 8015.2 | 5520 (13528.0 | 6130
2| 1-0 214 )3.99511.77| 8056.5 | 10320 [13582.8 | 10327
3303-j155n16’1..16 3.015[1.77| 8010.4 | 9970 [11637.2 | 9616
III. CoMPUTATIONS RESULTS

Computations of the quasi-TE;-mode resonant frequency of
dielectric resonators having the same dimensions and permittivi-
ties as in [8] and [9] have been carried out first. The results are
presented in Fig. 2(a) and in Table I for the M. Jaworski er al.
resonator [8] and in Fig. 2(b) and in Table II for that of D.
Maystre et al. [9]. Fig. 2 shows the convergence of approximate
solutions versus the number of basis functions. The convergence
of the Rayleigh-Ritz method is worse than Weinstein’s and the
matching of modal expansions methods. On the other hand; the
Rayleigh-Ritz method leads to a simple eigenvalue problem
which can be solved faster than the problem of the vanishing
determinant which must be solved when those methods are used.
For the Rayleigh—Ritz method, basis functions have been chosen
in the way described in [14] to get the fastest convergence of the
quasi-TEg,;,-mode frequency. Subscripts of the basis functions
are shown in Tables I and II. An important feature of the
Rayleigh-Ritz method is that it provides upper bounds for true
resonant frequencies. Therefore, it is complementary to the
Weinstein method, which provides lower bounds for them.

For the proof of this see, e.g., [16]. It can be seen from Table II
and Fig. 2(b) that the method of matching of modal expansions
also provides lower bound for the quasi-TEg);-mode frequency.

Using two complementary methods, one can easily assess the
maximum error of calculations of resonant frequencies. It is
smaller than half of the difference between the values obtained
by these methods.

As the second example, the values of resonant frequencies and
intrinsic Q factors of full MIC dielectric resonators, shown in
Fig. 1, have been computed. The results are presented in Table
III. The first two lines in this table show the influence of the
substrate on frequencies and Q values. It is seen that the sub-
strate changes the frequencies less that by 1 percent (note that the
dielectric constant of the substrate is low). The influence of
substrate losses on the Q values is considerable. For a lossless
substrate, the intrinsic Q values are approximately equal to the
reciprocals of tané of the dielectric resonator medium, while for
a lossy substrate, the Q values decrease 40 percent. The influence
of substrate losses is greater when the h/a ratio is smaller
(compare lines 1 and 3 from Table III).

IV. CONCLUSIONS

Accurate values of resonant frequencies and intrinsic @ factors
of MIC dielectric resonators could be found by the Rayleigh—Ritz
method using electromagnetic fields of a post dielectric resonator
as an electrodynamic basis. The method described in this paper
allows one to find nonradiating quasi-TE,,,,,, modes. For low-loss
resonators, the method provides upper bounds for true resonant
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frequencies. Application of the method requires the solution of
an eigenvalue problem for a complex matrix of not very high
order. Upper and lower bounds of resonant frequencies can be
assessed if two complementary methods are used for calculations.
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Abstract —The analysis of a cross-coupled coaxial-line/rectangular-
waveguide junction having dissimilar coaxial lines is presented. An equiv-
alent circuit is deduced for the case where the TE,; mode is the only
propagating waveguide mode. Experimental/theoretical comparisons are
also reported which show the analysis to be very accurate.
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I. INTRODUCTION

Cross-coupled junctions have been used in a wide variety of
microwave devices. In the early days, they were used as a means
of interconnecting coaxial line and rectangular waveguide. More
recently, they have been used in many microwave electronic
circuits (e.g., IMPATT diode circuits) and in power combiners.

Whatever the application, the microwave engineer needs to be
able to calculate, usually with reasonable accuracy, and often
over a significant frequency range, the input impedance at one
port of the junction for various load conditions at the other ports.

In spite of the numerous applications of the junction, most
designs have been based on empirical knowledge, there having
been only a few analyses of the problem reported [1]-[3].

The analyses presented in [1]-[3] related to junctions whose
coaxial inputs were identical. In some applications (for example,
microwave circuits), the additional freedom of being able to have
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example, if port 2 is loaded by Z; , then the input admittance
seen at port 1, ¥}, is given by

Y,V

Y1=Y11—ZL2ﬁ_7:272;-

(3)

As in [3], the result for ¥;; may be obtained by considering the
junction with port 2 short-circuited (i.e., ¥, = 0). Thus, ¥;; may
be shown to be [3], [4] (time dependence assumed e’/*?)

S ./ R
nokh I’ (by/a)

=

-{khln(bl/a)cot(kh)—Dél—Z i D,},l} (4)
m=1

where j=v~1,k=2n/X, 7, is the intrinsic impedance of free
space, and

X — — — _
- E(YE)(qua)JO(qubl)_Y()(qubl)JO(qua))

. ‘]O(qubl) .JO(qubl)Y()(qua)_JO(kaa)x)(qubl) -2
JO(qua) JO(qua)S*(qua’ qud’e/d) "
LSS
" kh
D=
- Iy (g, kb,)
(KO(qubl)IO(qua)_KO(qua)IO(qubl)).(_Igo(qm—kal)

ma

kh

dissimilar coaxial inputs may provide a useful design variable.
Thus, in this paper, the general cross-coupled junction, shown in
Fig. 1, is considered by the approach presented in [3].

II. ANALYSIS

Consider the cross-coupled junction shown in Fig. 1. Note that
the inner and outer radii of the coaxial apertures at ports 1 and 2
are (a, b,) and (a, b,), respectively, and that they have the same
inner radii but different outer radii. Ports 1 and 2 are defined
such that b, > b,.

This cross-coupled junction may be analyzed by the method
presented in [3]. It is assumed that the waveguide has an air
dielectric, has perfectly conducting walls, and, in the analysis in
this section, that the waveguide is perfectly matched at both ends.

Proceeding as in [3], we represent the junction (for the case
where both waveguide ports are matched), by the pair of two-port

network equations
L=YyW + Y,V

L =Yy + Y,V (1)
where I and V are taken to be [3]
27
I=——— H,, V= E, 2
ln( b/ a) ’/;perture o '/;perture ( )

where E, and H, are the radial component of the electric field,
and the #-component of the magnetic field at the appropriate
aperture, and where b in (2) is b, or b, appropriate to the
aperture being considered.

It now remains to find Y¥;;, Y5y, and ¥,; (of course Y, =¥,
by reciprocity). Having found these parameters, we can then
consider the junction for any loading of the coaxial ports. For

>1

_ IO(qubl)KO(qua)—IO(qua)K()(qubl) qz
IO(qua)S(qua9 qud’e/d) m’

where

2
m
=y (%) 1
2
— mar
Idm = 1_(7}1—)

§*(Gnka, G, kd, e/d) = H? (G, ka)+ Jp( g, ka)

+ o0
{ Y HPQ2|n|G,kd)

= — 00
*0

+ o
- Y HPQm+ e/dmmkd)}

n=—o00

S(gmka, q,kd,e/d)=K,(q,ka)+1,(q,ka)

{ f Ko(2|n|q,,kd)

n=—0o0
%0

-3 Ko(z|n+e/d|qud)}

n=—oo

and J,, ¥,, I, K,, and H{? are Bessel functions of the first and
second kinds, modified Bessel functions of the first and second
kinds, and Hankel functions of the second kind, respectively.

The expression for ¥,, may be obtained in the same manner,
and is the same as the expression for Y;; except that b, is
substituted for b;.
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Fig. 1. A sectional view of the cross-coupled coaxial-line /rectangular-wave-

guide junction.

The result for ¥,, is given by an expression involving integrals
in the plane of aperture 2 (i.e., over the annulus from r=a to
r = b,) when port 2 is short-circuited and the junction is driven
from port 1. Y, can be obtained in this manner from, and by
extension of, the work in [4] and [5]. It should be noted that the
magnetic field is given by different expressions in the two regions
a<r<b, and r> b, ([4, see eq. (9)]). Since it has been assumed
that b, > b,, integration over the range a to b, needs to be
considered in two parts. This is the essential difference between
the derivation of Y, for this problem and that for the identical
coaxial input cross-coupled junction considered in [3]. A detailed
derivation of the result for ¥;, may be found in [6]. ¥y may be
shown to be given by [6]

_ 2aj
wokh1n(b, /a)1n(b, /a)

pr2 ¥y (—1)'"»31} )
m=1

k
Y= {ln(bl/a);g(—hﬁ)—

where
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and
1 .
Y= 1 + jBy
RIRZZW(E +jx)
where
R - (2/7)In(b, /a) Jy(ka)sin(we/d)
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It should be noted that, as expected, the result (5) for the case
b, = b, reduces to the result for Y,, given in [3] for the cross-cou-
pled junction having identical coaxial inputs.

IIL

The equivalent circuit for the cross-coupled junction shown in
Fig. 1 can be deduced by the approach outlined in [3].
Considering the situation where the TE;, mode is the only
propagating waveguide mode, we can write
1

Rwa(% + jx)

EQUIVALENT CIRCUIT

Y= + jBy

Y,= + jBxy

R%ZW(—;- + jx)

_ IO(qubZ)KO(qua)—IO(qua)KO(qubZ) 2
IO(qua)S( qud, qud7 e/d)

m?

—>1.

and
P 27 1 2
27 T o In(b,/a) sin(kh)  mokhin(b,/a)n(b,/a)
i Jo(kby)
A2 Y (~)"DR+ 2
(2 £ o756

~[Jo(ka>mkbz)—Jo(kbzm(ka)]}

while B,, is given by an expression the same as that for By, but
with b, replaced by b, and Dj! replaced by D;’.

Following the procedure outlined in [3], we can isolate the post
thickness reactance X, where

X, = 2nkyyd(a/d) sin® (re/d) Z,,



280
-1 Xg -1Xg
o it {—0c
Xa
waveguide Ry1
port waveguide
port

L, = -0

Fig. 2. The equivalent circuit for the junction shown in Fig. 1 for the case
where the TE;), mode is the only propagating waveguide mode
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Fig. 3 A companson of theoretical and experimental results for the input
impedance at port 1 of a junction having a=0.310 cm, b, =0.713 cm,
by =127 cm, h =570 cm, d =12 80 cm, and e¢/d = 0.5, with both wave-
guwde ports matched, for cases where a short-circuit 1s applied in the coaxial
Iine at port 2 at distances from port 2 of @ 3.02 cm, 5 6.04 cm, and @
9.06 cm. theoretical results, --- experimental results,

and obtain the equivalent circuit for the junction, which is shown
in Fig. 2, where B,= By, — By, B, = By,B.= B,, — By, and
X, =xZ,+ Xp/2.

IV. COMPARISON OF THEORY AND EXPERIMENT

In order to demonstrate the application of the theory presented
here, impedance calculations have been made for two situations
which have also been investigated experimentally. The numerical
results were obtained using the computer programs listed in [6],
copies of which are available from the author.

In Fig. 3, theoretical and experimental results are shown for
the input impedance at port 1 of a cross-coupled junction having
a=0.310cm, b; =0.713 cm, b, =1.27 cm, h =570 cm, d =12.80
cm, and e/d = 0.5 with both waveguide ports matched. Three
cases are considered corresponding to short-circuits applied at
distances of 3.02 c¢cm, 6.04 cm, and 9.06 cm from port 2 in the
coaxial line at that port.

In Fig. 4, theoretical and experimental results are shown for
the input impedance for the same situation considered in Fig. 3
except that now e/d=0.383, and only one of the waveguide
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Fig. 4. A comparison of theoretical and experimental results for the input
impedance at port 1 of a junction having a=0.310 cm, b, =0.713 cm,
by =127 cm, h=5.70 cm, d=12 80 cm, and ¢/d = 0.383, with one wave-
gwde port perfectly matched and the other short-circuited at a distance of
5.0 cm from the junction, for cases where a short-circuit is applied in the
coaxial line at port 2 at distances from port 2 of @ 302 cm, 6.04 cm,

and @ 9.06 cm. experimental results.

theoretical results, - - -

ports is perfectly matched, the other being short-circuited at a
distance of 5.0 cm from the junction.

Clearly, the agreement between theory and experiment is excel-
lent. This is not unexpected of course, since the theory on which
this work is based [3], {4] has previously been shown to yield very
accurate results.

V. CONCLUSION

The analysis of a general cross-coupled coaxial-line /rectangu-
lar-waveguide junction having dissimilar coaxial lines has been
presented. An equivalent circuit for the junction, applicable to
the case where the TE,, model is the only propagating waveguide
mode, has also been deduced.

Comparison of theoretical and experimental results has shown
the analysis to be very accurate.
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