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TABLE III

THE COMPUTEDVALUESOF FREQUENCIESAND INTRINSIC Q
FACTORSFORDIELECTIUCMIC RESONATORSHAVING
c,= 36.2(1– j 10–4), L=ll.o mm, AND Cb = Re(?r)

I 1

Permittivity Dimensions TE modes TEmmedes
e. m; a

mm f;@ MHz Q;m] f,w MHz Q(:)

1 303-f.65UlIiz 2.14 3995 1.77 8015.2 5520 13528.0 6130

2 l-jO 234 3.99s t77 805&5 10320 13582.8 10327

3 303-jl.65x10Z416 3.m5 1.77 801O.4 9970 1163Z2 9616

III. COMPUTATIONS RESULTS

Computations of the quasi-TEoll-mode resonant frequency of

dielectric resonators having the same dimensions and permittivi-

ties as in [8] and [9] have been carried out first. The results are

presented in Fig. 2(a) and in Table I for the M. Jaworski et al.

resonator [8] and in Fig. 2(b) and in Table II for that of D.

Maystre et al. [9]. Fig. 2 shows the convergence of approximate

solutions versus the number of basis functions. The convergence

of the Rayleigh-Ritz method is worse than Weinstein’s and the

matching of modal expansions methods. On the other hand> the

Rayleigh-Ritz method leads to a simple eigenvalue problem

which cars be solved faster than the problem of the vanishing

determinant which must be solved when those methods are used.

For the Rayleigh– Ritz method, basis functions have been chosen

in the way described in [14] to get the fastest convergence of the

quasi-TEoll-mode frequency. Subscripts of the basis functions

are shown in Tables I and II. An important feature of the

Rayleig&Ritz method is that it provides upper bounds for true

resonant frequencies. Therefore, it is complementary to the

Weinstein method, which provides lower bounds for them.

For the proof of this see, e.g., [16]. It can be seen from Table II

and Fig. 2(b) that the method of matching of modal expansions

also provides lower bound for the quasi-TEOll-mode frequency.

Using two complementary methods, one can easily assess the

maximum error of calculations of resonant frequencies. It is

smaller than half of the difference between the values obtained

by these methods.

As the second example, the values of resonant frequencies and

intrinsic Q factors of full MIC dielectric resonators, shown in

Fig. 1, have been computed. The results are presented in Table

111. The first two lines in this table show the influence of the

substrate on frequencies and Q values. It is seen that the sub-

strate changes the frequencies less that by 1 percent (note that the

dielectric constant of the substrate is low). The influence of

substrate losses on the Q values is considerable. For a lossless

substrate, the intrinsic Q values are approximately equal to the

reciprocals of tan 8 of the dielectric resonator medium, while for

a lossy substrate, the Q values decrease 40 percent. The influence

of substrate losses is greater when the h/a ratio is smaller

(compare lines 1 and 3 from Table III).

IV. CONCLUSIONS

Accurate values of resonant frequencies and intrinsic Q factors

of MIC dielectric resonators could be found by the Rayleigl– Ritz

method using electromagnetic fields of a post dielectric resonator

as an electrodynamics basis. The method described in this paper

allows one to find nonradiating quasi-TEO. ~ modes. For 10W-1OSS

resonators, the method provides upper bounds for true resonant

frequencies. Application of the method requires the solutiop of
art eigenvalue problem for a complex matrix of not very &I
order. Upper and lower bounds of resonant frequencies can be
assessedif two complementary methods are used for calculations.
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Cross-Coupled Coaxial-Line/Rectangular-Waveguide

Junction
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Abstract —The anafysis of a cross-coupled coaxial-line/rectangular-

waveguide junction having dissimilar coax@l fines is presented. An equiv-

alent circuit is deduced for the case where the TEIO mode is the only

propagating waveguide mode. Experimental/theoretical comparisons are

also reported which show the analysis to be very accurate.
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I. INTRODUCTION

Cross-~oupled junctions have been used in a wide variety of

microwave devices. In the early days, they were used as a means

of interconnecting coaxial line and rectangular waveguide. More

recently, they have been used in many microwave electronic

circuits (e.g., IMPATT diode circuits) and in power combiners.

Whatever the application, themicrowave engineer needs to be

able to calculate, usually with reasonable accuracy, and often

over a significant frequency range, the input impedance at one

port of the junction for various load conditions at the other ports.

In spite of the numerous applications of the junction, most

designs have been based on empirical knowledge, there having

been only a few analyses of the problem reported [1]-[3].

The analyses presented in [1]-[3] related to junctions whose

coaxial inputs were identical. In some applications (for example,

microwave circuits), the additional freedom of being able to have

example, if port 2 is loaded by Z~,, then the input admittance

seen at port 1, Yl, is given by

Y12~,
Y1 = YI1 – ‘L2 1 + Z~2Y22 “ (3)

As in [3], the result for Yll maybe obtained by considering the

junction with port 2 short-circuited (i.e., Vz = O). Thus, Yll may

be shown to be [3], [4] (time dependence assumed eJ”z)

Y,, = –
2 Tj

-qOM ln2 ( bl /a)

(. khln(bl/a) cot(kh)– D~l–2 ~ D:
}

(4)
~=1

where j = ~, k = 2 r/ A, q. is the intrinsic impedance of free

space, and

dissimilar coaxial inputs may provide a useful design variable.

Thus, in this paper, the general cross-coupled junction, shown in

Fig. 1, is considered by the approach presented in [3].

II. ANALYSIS

Consider the cross-coupled junction shown in Fig. 1. Note that

the inner and outer radii of the coaxiaf apertures at ports 1 and 2

are (a, bl ) and (a, b2 ), respectively, and that they have the same

inner radii but different outer radii. Ports 1 and 2 are defined

such that b2 > bl.
I

This cross-coupled junction may be analyzed by the method

presented in [3]. It is assumed that the waveguide has an air

dielectric, has perfectly conducting walls, and, in the analysis in

this section, that the waveguide is perfectly matched at both ends.

Proceeding as in [3], we represent the junction (for the case

where both waveguide ports are matched), by the pair of two-port

network equations

11= Yllvl + Y12V2

12 = Y21V1+ Y22V2 (1)

where 1 and v are taken to be [3]

I=
2T

/
HO,

in ( b/a ) aperture
v=

J
E, (2)

aperture

where E, and HO are the radial component of the electric field,

and the O-component of the magnetic field at the appropriate

aperture, and where b in (2) is bl or b2 appropriate to the

aperture being considered.

It now remains to find Yll, Y22, and Y21 (of course Y12 = Y21

by reciprocity). Having found these parameters, we can then

consider the junction for any loading of the coaxial ports. For

where

S(qmZka, qn, kd, e/d) =Ko(qn, ka)+Io(qmka)

( n ;;W

- ~ Ko(21n+ e/dlqmkd)
n=—’x

)

(2J are Bessel functions of the first andand Jo, Yo, l., Ko, and Ho

second kinds, modified Bessel functions of the first and second

kinds, and Hankel functions of the second kind, respectively.

The expression for Y22 may be obtained in the same manner,

and is the same as the expression for Yll except that b2 is

substituted for bl.
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Fig. 1. A sectional view of the cross-coupled coaxial-line/rectangular-wave-
guide junction.

The result for Y21 is given by an expression involving integrals

in the plane of aperture 2 (i.e., over the anmdus frOm r = a to
r = b2 J when port 2 is short-circuited and the junction is driven

from port 1. Y21 can be obtained in this manner from, and by

extension of, the work in [4] and [5]. It should be noted that the

magnetic field is given by different expressions in the two regions

a < r < bl and r > bl ([4, see eq. (9)]). Since it has been assumed

that bz > bl, integration over the range a to bz needs ‘0 be

considered in two parts. This is the essential difference between

the derivation of Yzl for this problem and that for the identical

coaxial input cross-coupled junction considered in [3]. A detailed

derivation of the result for Y21 may be found in [6]. Yzl may be

shown to be given by [6]

25rj

{

kh
ln( bl/a) ——————

’21 = – qokh ln(bl/a)ln(bz/a) sin ( kh )

–D;’-2 ~ (–l)”D;’
)

(5)
~=1

where

and
1

Y21= + jB21

()
R1R2ZW ~+jx

where

~ = (2/m) ln(bl/a)Jo(ka) sin(ne/d)
1

.To(ka)~(kbl)- Jo(kbl)~(ka)

~ = (2/~) ln(b2/a)JO(ka)sin( re/d)
2

Jo(ka)~(kbz) –Jo(kb2)~(ka)

2 kh

‘w= klodqo

klod = {-

klod.—
()

CSC2 g
‘– 4n d

{ln(~si.(~))-2sin2(f)+2$2sid(~)

“[ ])T Yo(ka)
_——

&-~
2 Jo(ka)

C=1.78107 ..”

2Tr 277
B1l = –

~oln(bl/a)
Cot(kh)+ ~o~hln2(bl/~)

“{

T Jo(kbl)
25 D;l+– —

2 Jo(ka)~=1

.[Jo(ka)~(kbl)-.lo( kbl)~(ka)]
}

-f(~(qfl,ka)Jo( qmkb,)-Yo(ii~kb~ )4(%ka))

It should be noted that, as expected, the result (5) for the case

bz = bl reduces to the result for Y21 given in [3] for the cross-cou-

pled junction having identical coaxial inputs.

III. EQUIVALENT CIRCUIT

The equivalent circuit for the cross-coupled junction shown in

Fig. 1 can be deduced by the approach outlined in [3].

Considering the situation where the TEIO mode is the only

propagating waveguide mode, we can write

1
Yll = + jB1l

R:ZW
()

~+jx

1
Y22 = + jB22

R: ZW
()

~+jx

and

2rr 1 27f

’21 = – qoln(bl/a) sin(kh) + qokhln(bl/a) ln(bz/a)

“( m Jo(kbl)
2 i (–l)m D#+-–

2 Jo(ka)
m-l

-[ Jo(ka)%(kbz)-4( kbz)b(ka)]
)

while B22 is given by an expression the same as that for Bll but

with bl replaced by b2 and Dil replaced by D~2.

Following the procedure outlined in [3], we can isolate the post

thickness reactance XB, where

XB = 2mk10d( a/d)2sin2 ( me/d) Zw
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Fig. 2. The equivalent cwcmt for the junction shown in Fig. 1 for the case
where the TEIO mode is the only propagating waveguide mode
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Flg. 3 A comparison of theoretical and experimental results for the input
impedance at port 1 of a yrnction having a = 0.310 cm, bl = 0.713 cm,
bz = 1.27 cm, h = 5,70 cm, d =12 80 cm, and e/d= 0.5, with both wave-
gmde ports matched, for cases where a short-circmt M a lied in the coaxml
hne at port 2 at dmtances from port 2 of @ 3.02 cm, ~6.04crn, and @)
9.06 cm. — theoretical results, experimental results.

and obtain the equivalent circuit for the Junction, which is shown

in Fig. 2, where B. = Bll — Bzl, Bh = Bzl, Bc = B2Z — B21, and

XA = Xzw + xB/2.

IV. COMPARISON OF THEORY AND EXPERIMENT

In order to demonstrate the application of the theory presented

here, impedance calculations have been made for two situations

which have also been investigated experimentally. The numerical

results were obtained using the computer programs listed in [6],

copies of which are available from the author.

In Fig. 3, theoretical and experimental results are shown for

the input impedance at port 1 of a cross-coupled junction having

a = 0.310 cm, bl = 0.713 cm, b2 =1.27 cm, h = 5.70 cm, d=12.80

cm, and e/d = 0.5 with both waveguide ports matched. Three

cases are considered corresponding to short-circuits applied at

distances of 3.02 cm, 6.04 cm, and 9.06 cm from port 2 in the

coaxiaJ line at that port.

In Fig. 4, theoretical and experimental results are shown for

the input impedance for the same situation considered in Fig. 3

except that now e/d = 0.383, and only one of the waveguide

1;2 1.4 1.8 1:8 2:0 2;2

Fig. 4. A comparison of theoretical aud experimental results for the input
impedance at port 1 of a Junction having a = 0,310 cm, bl = 0,713 cm,
b2 =1.27 cm, h = 5.70 cm, d=12 80 cm, and e/d= 0.383, with one wave-
gmde port perfectly matched and the other short-circuited at a distance of
5.0 cm from the junction, for cases where a short-cmcmt is ap lied in the
coaxial line at port 2 at distances from port 2 of @ 302 cm, 6604cm
and @) 9.06 cm. — theoretical results, experimental results.

ports is perfectly matched, the other being short-circuited at a

distance of 5.0 cm from the junction.

Clearly, the agreement between theory and experiment is excel-

lent. This is not unexpected of course, since the theory on which

this work is based [3], [4] has previously been shown to yield very

accurate results.

V. CONCLUSION

The analysis of a general cross-coupled coaxial-line/rectangu-

lar-waveguide junction having dissimilar coaxiaf lines has been

presented. An equivalent circuit for the junction, applicable to

the case where the TEIO model is the only propagating waveguide

mode, has also been deduced.

Comparison of theoretical and experimental results has shown

the analysis to be very accurate.
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